Supporting Information for

Noble Metal-Modified Faceted Anatase Titania Photocatalysts: Octahedron versus Decahedron

Zhishun Wei, a,b Marcin Janczarek, b,c Maya Endo, b Kunlei Wang, b Armandas Balčytis, d Akio Nitta, b
Maria G. Méndez-Medrano, e Christophe Colbeau-Justin, e Saulius Juodkazis, d Bunsho Ohtani, b
Ewa Kowalska b,*

a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
b Institute for Catalysis, Hokkaido University, N21, W8, 001-0021 Sapporo, Japan
c Department of Chemical Technology, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
d Center for Micro-Photonics, Swinburne University of Technology, John St., Hawthorn 3122 Vic, Australia
e Laboratory of Physical Chemistry, UMR 8000, University of Paris-Saclay, 91405 Orsay, France

* Corresponding author, Tel.: 81-11-706-9130; fax: 81-11-706-9133.
E-mail address: kowalska@cat.hokudai.ac.jp

Figures and Tables

(a)

(b)

Figure S1. DRS spectra of bare and modified OAP (a) and DAP (b) samples taken with BaSO₄ as reference.
Figure S2. DRS spectra of facetted titania (OAP and DAP) modified with (a) gold, (b) silver and (c) copper taken with bare facetted titania as reference.

Figure S3. HR-TEM images of OAP for lower (a) and higher (b) resolution modes (0.35-nm lattice distance between fringes and 68.3° angle between {001} and {101} facets correspond to single anatase crystals).
Figure S4. STEM images of Au/DAP (All scale bars correspond to 20 nm).

Figure S5. Photocatalytic activity for methanol dehydrogenation on bare and metal-modified OAP (a) and DAP (b).

Figure S6. Photocatalytic activity for decomposition of acetic acid on bare and metal-modified OAP (a) and DAP (b).
Figure S7. Photocatalytic activity for oxidation of 2-propanol on bare and metal-modified OAP (a) and DAP (b).

Figure S8. Comparison of photocatalytic activity for methanol dehydrogenation on bare, Cu/OAP, Cu/DAP and physical mixtures of copper oxides (Cu$_2$O and CuO) and titania (Cu$_2$O-OAP, CuO-OAP, Cu$_2$O-DAP and CuO-DAP) under UV/vis irradiation.

Figure S9. Comparison of photocatalytic activity for oxidation of 2-propanol on bare, Cu/OAP, Cu/DAP and physical mixtures of copper oxides (Cu$_2$O and CuO) and titania (Cu$_2$O-OAP, CuO-OAP, Cu$_2$O-DAP and CuO-DAP) under vis irradiation.